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We have studied grid-generated turbulence in a water tunnel at moderate Reynolds
numbers. The method used was the standard one of Laser Doppler Velocimetry (LDV)
and an novel scheme, which we call photon homodyne correlation spectroscopy(HCS).
With LDV, we measured the probability density function of velocity differences P(6v(e))
on varying spatial scales e, by invoking the frozen turbulence hypothesis. The HCS

ft technique permits measuring P without using this hypothesis. Of special interest to
-.ini us was the behavior of the system at and above a Reynolds number (Re,) where the
| I turbulence becomes self-similar, in that <6bv(1)2 >, 6. Above Re, the exponent "

increases from 0 to 2/3 with increasing Re.
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This research was a study of grid-generated turbulence by a novel method of photon homodyne
correlation spectroscopy (HCS). The scheme enables one to measure velocity differences V(R) on a
spatial scale R, with no need to invoke the Taylor's frozen turbulence hypothesis. In this work we
compared such measurements with with Laser Doppler Velocimetry measurements of the velocity
at a point, v(t). From the latter experiment, we deduced the velocity difference V(R) with the
Taylor assumption, R = 6t/U, where U is the mean flow velocity and 6t is the time interval between
velocity measurements.

In that work it was observed that the time-time averaged velocity difference, < V(R) >, was of
self-similar form, < V(R) >= aRC, where ( is a function of Re, and a is a constant, which was also
measured. The AFOSR support enabled us to build a much larger tunnel and to span a wider range
of Reynolds numbers. Before summarizing our new results, I describe the HCS measuring scheme
in elementary terms.

If a light beam strikes a single particle moving with velocity v, the frequency of the light is shifted by
an amount k . v, where k is the the scattering vector of the light. If the scattering angle with respect
to the incident beam is G, then the magnitude of k is (41r/A)sin(8/2), where A is the wavelength of
light. This frequency shift is the basis for laser Doppler Velocimetry (LDV). If now, the incident
beam strikes two particles, moving with velocities v, and v2 , and if the scattered light falls on a
ehotomultiplier, the output of this device will be a photo-current modulated at the beat frequency
k • V1 - kv 2 ). Thus, one has a measurement of the diff. rence in velocity of the two particles. This
is the basis of HCS.

It turns out that one can measure velocity differences even when the beam traversing the turbulent
fluid is scattered by a large number of particles. In this case, the beatings of Doppler shifts from
many particle pairs, causes the scattered intensity, 1(t), to fluctuate in time. These temporal fluctu-
ations can be measured by a frequency analyzer, or more conveniently, by measuring the intensity
correlation function, < J(t')I(t'+t)>, where the brackets designate an average over t'. If one images
the scattered light beam on a slit of adjustable width L, then the (normalized) intensity correlation
function < !(t')I(t'(t) > / < I(t') >2>= g(t), has the form,

g(t) I + / b(R)d(R)f P(V(R))cos(kV(R))dV(R) 1 + G(t), (1)
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where b(R) = (2/L)(I - RIL) is the number fraction of seed particles separated by a distance R,
in the slit, and P(R) is the probability density function for velocity differences on a scale (R).
The symbol, V(R) denotes the projection of the velocity difference V(R) along the direction of the
scattering vector k.

We note several features of the above equation. The cosine factor is just the beat frequency associated
with velocity differences V(R), coming from particle pairs. Because the speed of light is so very large,
the experiment effectively measures simultaneously, velocity difference from the particles constituting
a pair (It turns out that the scattering from triplets of particles, etc, average to zero). Hence the
Taylor hypothesis need not be invoked. In principle a knowledge of P(R) is sufficient to determine
all the moments of V(R), from which the spectrum of fractal exponents can be extracted - if indeed
the turbulent energy lies on a fractal or multifractal. In practice, one cannot measure the higher
moments of P(R) with the HCS scheme, but one can learn a lot about the functional form of P(R).
Because the direction of the incident and scattered beams are at the experimenters disposal, velocity
differences V(R) can be measured in any direction, so the presence or absence of isotropy of the
turbulence can be determined. Like LDV, the HCS scheme is non-invasive.

This grant enabled us to construct a rather fine tunnel, roughly 10 cm x 10 cm in cross section. An
important feature of this tunnel was that its flat walls were of optical quality, so that the scattering
vector was well defined, and a sharp image could be formed on the slit. The mesh size M of the grid
in this new tunnel was 0.85 cm. The grant also enabled me to buy a laser Doppler velocimeter, so
that it was possible to compare the results of the HCS and LDV measurements at the same point
in the turbulent stream, namely 21 cm down stream from the grid.

In the LDV measurements we concentrated on measuring the probability density of velocity differ-
ences P'(V(R)), so that this function could be compared with the HCS measurements of P(V(R))
introduced above. If the Taylor hypothesis were applicable, P and P would be equal, assuming, of
course that the values of R were the same in both experiments. It turns out that the HCS scheme
is most suited for studying velocity differences in small scales, R, whereas the LDV scheme yielded
the most accurate information at large values of R. Nevertheless, the overlap interval of the two
measuring schemes was significant, namely 0.5 mm < R < 2.5 nun. With the present optics we
probe eddies as small as 0.1 mm with HCS, the limitation being the width to which we can focus
the beam segment which is imaged on the slit.

We have found that if Re exceeds some critical value, which we call Re,, the probability density
P(V(R)) has the simple scaling form, P(V(R)/u(R)), where u(R) is the characteristic width of P.
Over a decade in R, this width varies algebraically with R, i.e., u(R) - RC(Rd). In the Kolmogorov
theory, the exponent ( = 1/3. We find, on the other hand, that this exponent increases from
approximately zero to 1/3 as Re is increased above Re,. At our largest achievable values of Re, (
1/3. One interpretation of this observation is that the turbulence is increasing from sheet-like (fractal
dimension D = 2) to volume-filling (D=3) as Re is increased. In quite independent experiments,
carried out in a different way, Sreenivasan and his students have come to the same conclusion.

From a measurement of G(t) one can, in principle, deduce P(V) using Eq. 1. One sees from that
equation that P is closely related to the Fourier transform of G(t). In practice it is often difficult
to determine a function from its experimentally measured Fourier transform, and thus it was here.
All we can say is that we can recover the measured G(t) with a P that is the product of Gaussian
and Lorentzian factors, i.e.

P(R) = conast . ezp(-V(r)/2'(R)2 ) x 1/(V(R)2 + u(R)2), (2)

with u'(R) roughly five times u(R). This large ratio implies that, in the range of our measurements,
P departs only slightly from Lorentzian form. The LDV measurements are also consistent with a
P(R) of the above form, but in this case u and u' are almost equal. The measurements leave no doubt
that, in the domain of eddies sizes R and Reynolds numbers probed by these experiments, the time
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domain measurements (LDV) and the space domain measurements (HCS) yield very different forms
for P(V). Almost all existing measurements of this probability density are made in the time domain,
with the spatial information extracted by invoking the Taylor hypothesis. Recently Sreenivasan has
taken some measurements, using a single hot wire annemometer and also a pair of them. He too
finds a failure of the frozen turbulence assumption. This past week-I will give an invited colloquium
at Yale and had an opportunity to compare notes with him.

have summarized the work completed under the AFOSR grant. The experiments in our water
tinnel are continuing, and we are also probing the transition from chaos to turbulence in a couette
cell. We are also exploring the possibility of measuring the probability density for the vorticity,
P(w(R)) by optical means. The completed work has resulted in a number of publications, as you see
in the addendum. In addition I have been invited to present our results at various meetings, both
in the US and abroad. Professor Sirivat, Professor Tong, Mr. Pak and I are very grateful for the
support we have received from the AFOSR. The work done under this grant constitutes the PhD
thesis of Mr. Pak.



ADDENDUM

List of of publications that came from the AFOSR support:

1. "A Light Scattering Study of Turbulence", (W. I. Goldburg, P. Tong, and H. K. Pak),
Physica D 38 (1989) 134-140.

2. "Scaling Laws in Weak Turbulence", (with H. K. Pak, W. I. Goldburg and P. Tong),
(in press).

3. "An Experimental Study of Weak Turbulence", (with H. K. Pak and W. I. Goldburg),
"Fluid Dynamics Research" (in press).

4. "Measuring the Probability Distribution of the Relative Velocities in Grid-Generated
Turbulence" H.K. Pak, and W.I. Goldburg, (submitted for publication).

Invited talks that are an outgrowth of this work:

1. International Conference on Fractals in Physics
(A conference in honor of B. Mandelbrot), Nice, 1989.

2. SIAM Conference on Turbulence, Orlando, May, 1990.

3. Gordon Conference on Fractals, Plymouth NH, August, 1989.

4. International Workshop on Novel Experiments and Data Processing
for Basic Understanding of Turbulence, Tokyo, October, 1990.

5. Program on Spatially Extended Nonequilibrium Systems, Santa Barabara,
Aug. 1992.



APPEN~DIX A

A Light Scattering study of Turbulence

by W J Goldburg, P Tong, and H K Pak



Physica D 38 (1989) 134-140
North-Holland. Amsterdam

A LIGHT SCATTERING STUDY OF TURBULENCE

W.I. GOLDBURG, P. TONG and H.K. PAK
Department ot Physics andAstronomY. Universitt of Pittsburgh, Pittsburgh. P4 15260, USA

By scattering light from a turbulent fluid seeded with small particles, one obtains information about turbulent velocity fluctua-
tions over varying spatial scales. R. The measured intensity autocorrelation function. g(t). is related to the probability density
P( I(R) ) of finding velocity fluctuations of magnitude V(R) associated with eddies of size R. The measurements described here
strongly suggest that the energy-containing eddies occupy a fractal region whose dimension (or spectrum of dimensions) increases
with the Reynolds number Re wh(en Re exceeds some threshold value.

i. Introduction proach to the study of the small-scale structure of tur-
bulence. The method involves a measurement of the

In his seminal book, The Fractal Geometry of Na- autocorrelation function of the light intensity scat-
ture. Benoit Mndelbrot f 1 makes clear his deep in- tered by small particles suspended in the turbulent
terest in the geometrical nature of turbulence. As he fluid. For this technique there is no need to invoke
points out. the description of the visual appearance the "frozen turbulence assumption" to translate tem-
of a turbulent fluid, such as smoke curling up from a poral information to spatial information. According
cigarette. taxes our powers of description. It seems to this assumption. small-scale eddies (the ones of
that present-day speech is not well suited to evoking interest), are transported past a velocity measuring
the image of self-similar structures. After all. it takes device with the mean velocity U of the flow. If these
a series of images. one magnified with respect to the small-scale eddies remain intact for a long enough
other, to identify fractal structures. And turbulence time, a time record of the velocity v(t) at a point will
is. by all evidence, a fractal thing at its roots[ 2 ]. reveal spatial features of the flow through the equa-

There are many ways of revealing the fractal or tion v(t) = v(x/ U). The frozen turbulence assump-
spotty nature of a turbulent fluid. One technique is to tion fails unless the velocity fluctuations V(R) asso-
measure the time variation of the square of the veloc- ciated with eddies of size R are uncoupled from the
ity at a point in the fluid [3]. Another is to add a larer-wcaheeddies.

larger-scale eddies.
small amount of long-chain molecules to the fluid and The technique of photon correlation homodyne
observe it through crossed polaroids [4 1. The mole- spectroscopy (HS) [5]. which we have used in ourcules are locally aligned by turbulent shear forces. experiments. is that of recording the beating of scat-
These molecules. being anisotropic scatterers, depo- tered light waves that have been Doppler shifted by
larize the light in regions where the shear is large,
making the local structure of the strong vorticitv di- pairs of particles seeded in the turbulent fluid. The

rectly visible. technique was introduced many years ago by Bourke

Herein we describe experiments, carried out at the et al. [6], but seems largely to have been ignored.
Being an optical technique, it permits non-invasiveUniversity of Pittsburgh. which provide a new ap- osraino eoiyfutain tvr ml
observation of velocity fluctuations at very small

Present address: Exxon Research and Engineenng Co.. An- scales.
nandale. NJ. 08801. USA. The homodyne scheme is readily understood from

Essays in honour of Benoit B. Mandelbrot 0167-2789/89/S03.50 © Elsevier Science Publishers B.V
Fractals in Physics - A. Aharony and J. Feder (editors) (North-Holland Physics Publishing Division i
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fig. i. which shows two moving particles at a partic-
ular instant of time when their separation is R and KV(R)4> -u(R)n~ R-,. (1)
their velocities are v, and v2. The seed particles are with = }n. The homodyne technique is well suited
small enough that they scatter light isotropically. A to measure the lower moments of V(R), but not the
photodetector (PMT), located at an angle 0 with re- higher moments. On the other hand. the method
spect to the incident beam, receives the light from yields information about the functional form of the
both particles. The scattered light from each particle probability density P( V(R) ), that two points in the
is Doppler shifted by an amount k-v, and k'v 2 respec- fluid, separated by a distance R, have velocity differ-
tively, where k is the scattering vector, of magnitude ence lying within V(R) and V(R) + d V(R). Our cen-
k= (4,tn/A) sin( 6). Here A is the vacuum wave- tral finding is that P( V(R)) is well represented by a
length of the light (A= 488 nm in our experiments), Loreatzian function,
and n is the refractive index of the turbulent fluid in
our case the fluid was water. The photomultiplier,
which receives the light from the particle pair, is a for relatively small values of V(R). We also find that
square-law detector, so that its output current, 1(t), the scaling velocity u(R) - Rc, where C is a function
contains a beating term proportional to of Reynolds number, Re. The measurements were
cos [ k V, (R) t 1], where VA is the projection of the ve- made at very modest values of the Reynolds number.
locity difference v, -p, along the direction of k. In fact the turbulence was so weak that one might not

Henceforth the subscript on V, (R) will be dropped, have thought the flow would exhibit the self-similar-

but its R dependence will be retained. ty which was indeed observed. Throughout this pa-
The essential aspect of turbulence is that the veloc- -per the Reynolds number is defined as Re = Ulo/ v,

ity difference between two points in the fluid de- where U is the mean velocity of the flow. 1o is the outer

pends on the separation R of these two points. Ac- scale of the turbulence, and v is the kinematic viscos-

cording to the theory of Kolmogorov [61, the ity of the fluid.

moments of the velocity fluctuations V(R) obey a
scaling law

oyBB

Fig. I. A schematic diagram showing scattering geometry. The scattering vector k=k,-I 0 , where t, and k are the scattered and incident
wave vectors respectively.
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2. Experimental photodetector receives light from only one coherence
area [ 51. All of the interesting physics is contained

The detailed experimental setup can be found in in G(M). which is proportional to a sum of the time-
ref. [81. The fluid flow was generated in a closed averaged phase factors cos(ktW) coming from the
water tunnel comprised of a cylindrical pipe and a Doppler shift of all particle pairs in the scattering
pump of variable speed. The turbulence is generated volume. The function G (t) can be written as [ 8
by a grid within the pipe. The grid can be removed to L
permit study of wall-generated turbulence (pipe G()= f dRh(R) f dV(R) P(1'(R))
flow). A baffle section placed in the high-pressure side _-
of the grid, suppresses the turbulence generated by
the pump and by those sections of pipe on the high- xcos[kV(R)h], (4)
pressure side of thegrid. With this arrangement all of where h(R) is the probability of finding a particle
the turbulence is generated by the grid only. In most pair. separated by R. in the columnar region of length
of the experiments discussed here the diameter of the L.
pipe was 4.4 cm. and the aperture size of the grid was If the image on the slit is taken to be quasi-one-
3.1 mm. These parameters are taken to be Io in cal- dimensional, which is valid when the slit width re-
culating the Reynolds number. The measurements mains large compared to the diameter of the laser
were made 28 cm downstream from the grid. The beam, h(R) =2( 1 - R/L)/L. Note that the inner in-
water which flowed through the pipe was seeded with tegral in eq. (4) is the Fourier cosine transform of
polystyrene spheres 60 nm in diameter. These parti- P(VP(R) ). arid the G(t) may be thought of as a trans-
cles were small enough to scatter light isotropically form of the characteristic function. If the probabil-
and in sufficient concentration that their mean sepa- ity density P( V(R)) has the scaling form
ration was much less than the Kolmogorov dissipa- P( V(R))=Q[V(R)/u(R)J/u(R),eq. (4) becomes
tion length ,, which was estimated to be a fraction of
a millimeter. 

L

On the downstream side of the grid there is an op- G()= f dR h(R) F(ktu(R)). (5)

tically transparent section of piping to admit the in- 1)

cident laser beam and observe the scattering. Be- where F is the Fourier cosine transform of Q[ '(R) /
causethe flow is seeded.a thin column ofthescattered u(R) ]. It is easy to show that the scaling law in eq.
light is produced in the water and that light is imaged ( I ) follows if the probability density function
with a lens. on a slit of variable width. L. By varying P( V(R)) has the above mentioned scaling form.
L. the homodyne scheme permits the probing of ve- The above equations for g(i) have quite general
locitv flictuations V(R) from the smallest scale 1 to validity. They hold. for example, even if the fluid is
that of the width of the slit. L. stationary, and the seed particles are undergoing

Using a standard light scattering apparatus and a Brownian motion only. In that case, '(R) is inde-
digital correlator, we measure the intensity autocor- pendent of R and P( V(R) ) is a Gaussian function.
relation function. g(t) = <I1(t') 1(t'+t) )/ (1(t') > -. Then the function G(t) is an exponentially decaying
where I) is the scattered light intensity measured function [5], G(t)=exp(-2Dk 2 ). where D is the
at scattering angle 0. and the angle brackets represent diffusivity of the Brownian particles, and is given by
a time average over r. One can show [8] that the Stokes' law. This contribution to the decay of G()
correlation function g(t) has the following form: will be present, even when the fluid is turbulent.

However. in a turbulent fluid. 0',: decay time T of
G(t) is much shorter than the diffusive decay time.

The geometrical factor f(.4 ) is of order unity if the Td= 1/2Dk', so that the latter contribution can be
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safely ignored. From eq. (5 ). it follows that the tur-
bulent deca time should be of the order of T= .

I /ku( L ). because the fastest decay rate is associated "
with the largest eddies of size L.

A

3. Results 116
2- -2 em~ Linmm Re Flow it

1 * 60.5 1.0 1364 grid

Over a wide range of slit widths and Reynolds x 90 0.6 4300 op.

£ 90 0.3 26000 pipe
numbers, we find that the function G(m) exhibits the
scaling form.

0(At. L. kR) = G(K) .(6) i0- 2 1o - 1 1

with K - k'Li. This scaling behavior of GO) is ob- Fig. 2. The scaling function G( K) versus K=qut L it in pipe flow

served only when the Reynolds number exceeded a and grid flow.
certain value Re,. In the case of the grid flow de-
scribed above. Re, was roughly 500. which corre- Reynolds numbers. In one set of measurements
sponds to much weaker turbulence than that one nor- (closed circles), the grid was present in the other two
mally associates with scaling behavior. I, is quite sets (crosses and triangles), the grid was removed
possible that the scaling behavior is seen at such small (pipe flow). The correlation functions G(t) have
values of Re because the simultaneous velocity dif- been horizontally (and vertically) translated so that
ference '(R) is measured and no frozen turbulence they coincide. In the pipe flow measurements. the
assump'.on is needed in the data analysis. Reynolds number is based on the pipe diameter.

The exponent ui in eq. (6) was measured as fol- making it an order of magnitude larger than that for
lows. For a fixed slit width L and a fixed Re. G() the grid flow. even when the mean flow velocities U_
was measured at several scattering angles and hence are comparable in both cases.
wvcral values of k. All of the plots of log [G( )] vc,- A-n alternative way to determine the exponent -was
sus log(t) could be superimposed by horizontal to plot, on a double logarithmic scale. the slit-width
translation of one graph with respect to another. The dependence of the decay time. T. of G( 0. keeping Re
amount of translation. 6(k). is found to be roughly and k fixed. As is shown in fig. 3. linear variation of
proportional to k. i.e. u= I. when Re exceeded the log(T) with log(L) was seen at intermediate values
critical value Re,. However. in the absence of flow. of L. The data in fig. 3 were obtained in the grid flow
, = 2. as expected for Brownian motion of the seed at three different Reynolds numbers Re = 460. 1400.
particles. Similar measurements were made in which and 2200. Since T'z I/ku(L) and u(L) -L. the
k and Re were held fixed. and L was vaned. Again all slope of this line yields the exponent . which is I / 3
the plots of log[ G(t) I versus log(t) could be super- in the Kolmogorov theory. We have verified that the
imposed, yielding the result K-.kLt as long as Re powerlaw behaviorat largeL waslimited bytheouter
exceeded Re,. In these experiments, is found to be scale. I. of the turbulence. At small values of L the
Re dependent. We return to this important observa- beam diameter was no longer negligibly small. Ahich
tion below, could account for the decrease in Tat small values of

Fig. 2. a log-log plot of G(K) versus c. shows the L. Imperfections in the optical system may also be
scaling behavior of GO) discussed above. The mea- responsible for the decrease in Tat small slit widths.
surements correspond to several values of scattering The behavior of T( L) at small L has more recently
angle. or k-value, several slit widths and at various been reexamined in a water tunnel of much supenor
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Fig. 3. The decay time T L) versus slit width L in grid flow. The Fig. 4. The exponent C as a function of Re in pipe flow. The solid

number below a line is the slope of that line, line is drawn by eye through the data points, and the dashed curve

shows the oscillatory behavior of .. The inset shows C versus Re
in grid flow.

design to that used in the studies reported above. In
this experiment. the optically transparent pipe, where
g(t) was measured, was square in cross section, rather - 5.
than cylindrical. so that the laser beam was undis- - L 0.3mm

a = go*
torted in passing through it. In this square pipe, the 4.8 Re = 23000

beam diameter was less than 0. 1 mm, which is smaller
than the smallest value of L at which g( t) was mea- 24 4%

sured. Using laser Doppler velocimetry and invoking 2
the frozen turbulence assumption one can determine 4. 0o 3

the smallest eddy size Id. At Re= 850, we obtained Time (tO-sac)
d=0.4 mm. At values of L between 0.4 mm (= 1d)

and 0. 1 mm. the decay time of G( t) became indepen- Fig. 5. A plot of log[ G(q. L) ] versus t in pipe flow at indicated

dent of L, i.e. CO when L<ld. This result is very parameters.
different from the Kolmogorov prediction. ;= I when
L < Id . the notion that the turbulence becomes increasingly

From the straight-line segment (solid line in fig. 3) three-dimensional as Re is increased above Re, and
we can extract the slope C which shows a Re-depen- that in the vicinity of Rec, the turbulence is two-di-
dent feature. Fig. 4 shows C as a function of Re for mensional 191.
both pipe flow and grid flow (insert). The exponent We now turn to the discussion about the functional
; is seen to increase from 0 to % 1/3 (the Kolmogo- form of G(t). Fig. 5 is a semilog plot of G() versus t
roy value) as Re is increased. When the Reynolds in pipe flow at the indicated values of L, 0, and Re.
number is below Re,, G(t) fails to exhibit scaling be- The straight line is a linear fit to the data points at
haviour. The measured Re, % 300-400 in the grid flow small t. It is seen that only at large time does the curve
and Re, -_ 3000-4000 when the grid was removed, start to deviate from the linear behavior. If we as-
Measurements in the improved water tunnel give sume that the characteristic function F(ku(R)t) in
similar results. These observations are consistent with eq. (5) has the form F-exp( -ku(R)t], G(t) then



141 Goldburg et al. /A light scautring study of turbulence 139

becomes an incomplete gamma function with ku (L) t theory to take this effect into account [ 13 1, one has
as its argument [ 8 ]. This equation is well fitted to u(R) - R., with C= J ( I +D- 3). According to this
our measurement of G(t). An example of this good model, the increase of from 0 to t J corresponds to
fit is shown in fig. 6. Note that the assumption of F(x) an increase of D from 2 to 3.
being a single exponential decaying function implies It should be stressed that our measurements of g(t )
that P( V(R) ) is of Lorentzian form as shown in eq. described above, do not directly give information
(2). This function has a diverging second moment, about the fractal dimension of the energy-containing
to which the energy density in the fluid is propor- eddies; it can only be said that the data invite such an
tional. Therefore G(t) cannot have this form for large interpretation. The above interpretation of the data
values of V(R). We indeed observed departures from in fig. 4 is supported by the recent work of Shreeni-
this Lorentzian form for P( V(R) ) with very large vasan et al. [3]. They measured the fractal dimen-
values of I'(R) (corresponding to very small t for sion of the interface of two counter-flowing fluids. one
((t)) [ 10. 11 ]. However, these observations will not of which has been dyed. Such measurements. made
be discussed further here. Most theories of turbu- in the vicinity of Rec, support the conclusion that in-
lence concentrate on the scaling behavior of the mo- creasing Re above Rec increases the dimensionality
ments of I,( R), rather than in P( V(R) ) itself. Quite of the turbulent active region. With one adjustable
often. P( ( R)) is assumed to be of Gaussian form, parameter. Ret, the data of Shreenivasan et al. can be
P( '( R) ) exp{ - [ V(R )/u(R) ]-k, but this form of directly superimposed on the measurements in fig. 4
P( '( R)) is clearly contrary to our findings. (3].

How can one understand that the exponent in- Even if the energy-containing eddies in a turbulent
creases from 0 to : 1/3 as the fluid becomes increas- field occupy regions with dimensionality less than 3.
ingly turbulent? A fundamental understanding of this it is not necessary that the entire turbulent region be
result is lacking, but it can be said that the observa- characterized by a homogeneous fractal. Benzi et al.
tion is consistent with the notion that the turbulent [ 141 have proposed a model that the turbulent re-
active region is a fractal [ 12 ]. Let the fractal dimen- gion is a multifractal object. In their model there is a
sion of the turbulent region be D. Since the turbulent probability, x, that the turbulent region is space fill-
energy is confined to active regions of dimension ing (D=3) and a probability. I -x. that D=2. Our
D < 3. the concentration of the turbulent energy is in- measurements are consistent with this model, pro-
creased to smaller regions, relative to the case of vol- vided one makes an additional assumption that x is
ume-filling turbulence. Modifying the Kolmogorov a function of the Reynolds number. The details of the

model have been worked out for a general function
of x(Re) and fitted to experiment [9 ]. At present.

O.20 however, our measurements are not precise enough
-- L. • 0.6nim0. mto confirm that a multifractal model is required to/9go*go

6. , 6 explain the observations.

0
6.72

4. Concluding remarks
A 6.4

What started out as a study carried out in the time
0 iVG 3.2 4.6 6.4 . domain (themeasurementofg(t)),hasendedupbyt ( 1O0 sec )doan(hmesrmnogt))haeddupb

yielding spatial information about turbulent flow. The

Fig. 6 A t.xpical autocorrelation function g(t) versus t m rd homodyne experiments provide further confirma-
ilow The solid line is a fit to the incomplete gamma function. tion of the notion of Mandelbrot that the energy-
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ABSTRACT. Photon Homodyne Spectroscopy (HCS) and Laser Doppler Ve-
locimetry (LDV) have been used to study turbulent velocity fluctuations V(R) asso-
ciated with eddies of size R. For small R both types of measurement were consistent
with a model in which the active regions of turbulence lie on a fractal of dimension
D, with D increasing from - 2 to - 3 as the Reynolds number (Re) increases above
some threshold value. At larger eddy sizes, the LDV measurements show a different
scaling of the velocity fluctuations. We associate these larger eddies with the energy
reservoir that feeds the inertial cascade.

INTRODUCTION

It is known that the motion of an incompressible fluid is regular and smooth at low
Reynolds number (Re). As Re increases, the flow becomes chaotic and irregular,
and finally it develops into turbulence. One of the essential aspects of turbulence
is that the large-scale eddies which initially contain most of the kinetic energy, split
into smaller scale eddies, and the process is repeated, again and again, until the size
of the eddies is so small that their kinetic energy dissipates into heat. Elementary
theories of fully developed turbulence are based on the hypothesis that the small scale
statistics of turbulent flow obeys universal scaling properties, such as

V"(R) - R h ,  (1)

where V(R) is the velocity difference associated with turbulent eddies of size R. In
general, h ; 1/3 for fully developed turbulence (Kolmogorov 1941).

We describe experiments in which the above self-similarity is observed in a
weakly turbulent grid flow, even though the maximum Reynolds numbers reached in
these experiments is not very large. This self-similarity or scaling was seen in two
different ways: homodyne photon correlation spectroscopy (HCS) and laser Doppler
velocimetry (LDV).

TECHNIQUES

With the LDV technique (Durrani and Greated 1977) the Doppler shifted light scat-
tered by small particles suspended in the turbulent fluid is mixed with the reference



beam. The detected light intensity I(t) is therefore modulated by the Doppler fre-
quency, q- v(r, t), where q is scattering vector and v(r, t) is the local velocity of
scatterers in the fluid. Our interest in the LDV measurement was focused on the
vaianace,

< V 2 (7 ) >=< :.(t' + 7- (t)1 >. (2)

To relate < V 2(r) > to the spatial velocity variation, < V2 (R) >, we used Taylor's
hypothesis (frozen turbulence assumption) which assumes R = UTr, where U is the
mean flow velocity.

With the HCS technique (Berne and Pecora 1976, Tong et al. 1988), one
measures the intensity correlation function g(t) =< I(t' + t)I(t) >. If one normalizes
g(t) so that g(t) = 1 + const . G(t), with G(0) = 1 and G(oo) = 0, then

G(t) = o h(R) dR F_ dV(R) P(V(R), R)cos(qV(R)t). (3)

Here, V(R) is the component of the instantaneous velocity difference V(R) along the
scattering vector q, and P(V(R). R) is its probability density function. The scattering
volume viewed by a photodetector is assumed to be quasi-one-dimensional with length
L, and h(R) = 2(1 - R/L)/L is the probability density of finding a pair of particles
separated by a distance R in the scattering volume. Equation (3) means that the
light scattered by each pair of particles contributes a phase factor cos(qV(R)t) (due
to the frequency beating) to the intensity correlation function g(t), and g(t) is the
incoherent sum of these ensemble averaged phase factors over all the particle pairs in
the scattering volume.

EXPERIMENTAL

The fluid flow was generated in a closed water tunnel with a variable speed pump.
Undesirable flow disturbances produced by the pump and piping system were damped
out in the plenum chamber on the high pressure side of the grid. The grid, which
generates the turbulence, consists of an array of rods of width 0.016 cm and with a
mesh size, M = 0.85 cm. The Reynolds number is defined as Re = UM/v, where v
is the kinematic viscosity of water.

The tunnel itself (Pak et al. 1991) is 110cm long and its square cross section
is 10 cm x 10 cm. Polished plexiglass windows are furnished on four sides of the water
tunnel to admit the incident laser beam and to observe the scattering. A recovery
tank is located at the low pressure end of the tunnel. Its large volume slows the flow
before the water returns to the pump intake. The water was distilled and seeded
with polystyrene spheres of uniform size. These particles scatter the light for both
the HCS and LDV measurements. The observation point for both experiments was
on the axis of the tunnel and 21 cn down stream from the grid, where the spanwise
velocity profile is flat. All measurements were made at room temperature.

In the HCS experiment a mildly focused argon-ion laser beam entered the test
section from above, and the scattering measurements were made in the horizontal
plane. A lens was placed in such a position as to form an 1:1 image in the plane of
an adjustable slit. It is the slit width L which controls the scattering volume size
viewed by the photomultiplier. For the LDV measurement we used standard tech-
niques for measuring the stream-wise component of the velocity v.(t). The Taylor's
hypothesis is expected to be valid only if the rms velocity fluctuations around the
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Figure 1. Measured G(t)'s for (a) the turbulent grid flow of Re = 1800 and L =
0.7 mm and (b) turbulent Couette flow of Re = 8.3 x 10' and L = 1.0 mm.

mean, V<(v(t) - U) 2 >, are small compared to U itself. For all the measurements

reported here, V< (v(t) - U) 2 >/U was less than 4%.

RESULTS

In the HCS measurement, it was found that over a limited range of slit widths and
Reynolds numbers, G(t) has the scaling form, G(t) cx G(qu(L)t). Figure 1(a) shows
a typical G(t) in the water tunnel. Here Re is 1800 and the slit width is 0.7mm. We
define u(L) from the inverse of the decay time of G(t), i.e. 1/T = qu(L). Therefore
u(L) is the characteristic turbulence velocity difference at length scale L. The above
scaling form of G(t) was seen only when Re exceeded some critical value, Re, = 300.
It was also found that u(L) has a scaling form, u(L) - L*. As Re increases from
Re z_ 300 to 800, a increases from 0 to 1/3 (the Kolmogorov value), and beyond
Re 2: 800. a saturates at the value of 1/3 (see Fig. 2(a)). The minimum usable value
of L is limited by the laser beam width to 0.2 mm. The upper limit of L was set by
optical coherence effects (Berne and Pecora 1976) to approximately 0.2 cm.

Figure 3 is a log-log plot showing a typical < V 2(R) > vs R of LDV, sub-
tracting R-independent contributions from the instrumental phase fluctuations (Pak
et al. 1991). These measurements were made at Re = 330 (curve (a)) and Re = 1400
curve (b)) respectively. The curves have been shifted vertically to improve visibility.
n the LDV measurements the smallest R was limited by the scattering volume size

0.3 mm, and in the opposite limit of R is approximately the mesh size, M = 0.85 cm.
For Re ' 300(Re,), there are two scaling regimes in which < V 2(R) >.- RC for
R < 0.15cm and < V 2 (R) >-- R for R ' 0.15cm. Curves (b) and (c) of Fig. 2
are scaling exponents C/2 for small R and 7/2 for large R respectively. For small R,



1.0

r0.8 (C) cc

0

0.6 ° 0
LLJ

0.4 (b) 0

f00 0~0.2-

0
0 1000 2000

Re

Figure 2. Scaling exponents in the inertial subrange and the energetic subrange
measured by LDV and by the HCS techniques: (a) c(Re) in the inertial subrange
measured by HCS. (b) C/2(Re) in the inertial subrange measured by LDV. (c) q/2(Re)
in the energetic subrange measured by LDV.

where both techniques probe overlapping ranges of R, as a increases from 0 to 1/3. C/2
decreases from 1/2 to 1/3. Both exponents, a and C/2 saturate at 1/3 for Re> 800.
For large R, as Re increases, 77/2 decreases from 0.8 and saturates at 0.5. Below we
offer a possible explanation as to why a and C should vary oppositely with increasing
Re.

DISCUSSION

To interpret the LDV and HCS measurements at small R, we invoke the / model
(Mandelbrot 1976, Frisch et al. 1978). According to this model the turbulent kinetic
energy in the inertial range lies in an "active" region having fractal dimension D.
With this model P(V(R), R) can be factorizable to the form. P*(u(R), R) • R" .

Here P*(u(R), R) is the probability density of u(R) in the active region and the

factor R3-D is proportional to the sparcity of active turbulent regions at small R.
Therefore the product of R 3-D and h(R) is proportional to the probability of finding
a particle pair in an active region within the slit. These factors have little effect
on u(R). For this reason, an HCS experiment of u(L) is a measurement of velocity
differences in the active regions of the turbulence only. From this model one readily
derives that a = (D - 2)/3. Therefore an increase of a from 0 to 1/3 implies that D
is increasing from 2 to 3.

The LDV technique for small R, unlike HCS, probes both the "active" and
"inactive" regions of the flow, since both regions are moved past the observation
point at the mean flow speed U. Because of the sparcity of active turbulent regions,
< VI(R) >_, u2(R). R"-D - RC with C = 1- a = (5 - D)/3. Accordingly, C/2 should
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Figure 3. Log-log plot of < V 2(R) > vs R from the LDV measurements. Shown
here are measurements at Re = 1400 (a) and Re = 330 (b). The dashed and solid
lines, of slope C/2 and 77/2 respectively, are discussed in the text.

decrease from 1/2 to 1/3 as a increases from 0 to 1/3. The small-R range (inertial
range), where the above fractal model can be applied. is limited from below by the
Kolmogorov dissipation scale. The inertial-range eddies are fed by a reservoir of
larger, energy-containing eddies which normally are not associated with self-similarity.
Nevertheless the measurements of < V2 (R) > at large R (the solid lines of Fig. 2
and curve (c) in Fig. 3) seem to define an exponent (7) associated with these energy-
containing eddies. Since the range of R where 7 is well defined is much less than a
decade. 71(Re) may have little physical meaning.

Recently we have commenced HCS measurements in a flow between two con-
centric cylinders (Couette Cell, with the inner one rotating (Tong et al. 1990). When
this flow was highly turbulent, G(t) (and by implication of P(V(R), R)) was clearly
of different functional form than for the water tunnel measurements. Curve (b) of
Fig.1 is G(t) for the Couette flow at Re = 8.3 x 10s and slit width L = imm when
the laser beam passed through the gap radially.

CONCLUSION

The combined LDV and HCS experiments reported here provide additional evidence
that in the inertial range of eddy sizes, the fractal dimension D of the turbulence
increases with increasing Reynolds number. The observations are consistent with an
increase in D from - 2 to - 3 as Re increases above some system-dependent threshold
value. Re,. This assertion is based on the recognition that these two measurement
schemes average over the velocity fluctuations V(R) in different ways. The HCS
technique probes the active region only, whereas the LDV measurements average
over the inactive regions as well.
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Homodyne photon correlation spectroscopy (HCS) and laser Doppler velocimetry

(LDV) were used to study the probability density function of velocity differences

6v(1) between points in the fluid separated by a distance t. These two measuring

schemes yield different results for the probability density, P(6(v(t)) d6v(t). Both

types of measurement show that P(6v(t)) is well approximated by the product of

Gaussian and Lorentzian factors, with P being more Lorentzian-like for the HCS

measurements and more Gaussian-like for the LDV measurements. The HCS method

probes the spatial fluctuations directly, whereas the LDV technique records temporal

fluctuations in velocity and relates them to the spatial fluctuations through the Taylor

hypothesis.
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In turbulent flow the quantity of interest is not so much the velocity itself, v(r, t),

as the instantaneous difference in velocity at two points separated by a distance 1.

This quantity 6v(t) =_ v(r + t, t) - v(r, t) is characterized by a probability density

function, P(6v(l)) d5v(t), where v is the measured component of v. Herein we report

measurements of P(6v(t)) in turbulent flow generated by a grid in a water tunnel. The

experiments explore a range of I-values and span a range of Reynolds numbers under

conditions that possibly lie between chaotic behavior and fully developed turbulence.

Our measurements of P(6v(e)) will be compared with a measured probability

density function P'(6v(t)) deduced from a record of the velocity as a function of time,

recorded at a single point in the turbulent fluid. Both types of measurement were

made at almost exactly the same position in the turbulent stream. To deduce spatial

information from the time record of the the velocity, it is necessary to invoke the

so-called Taylor hypothesis (frozen turbulence assumption) [1], which simply means

that v(t) is replaced by v(x/U) where U is the mean flow velocity. Virtually all

measurements of the probability density function for velocity differences on scales I

have been made in this way [2]. It is this probability density which we have designated

as P'.

In the work reported here, P and P' are found to be very different. As for P, it is

well represented by the product of Gaussian and Lorentzian terms. The Lorentzian

factor is found to have a much smaller width, UL(M), than the width UG(t), of the

Gaussian factor. The new measurements reported substantiate those made in a much

smaller water tunnel [3-5]. The function P' is much more Gaussian in form than P,

but it too gives a heavier weighting to large velocity fluctuations than does a purely

Gaussian function or even an exponential one. If one parameterizes P' by the product

of Gaussian and Lorentzian factors, the widths of these two factors are comparable

in magnitude. For our measurement at least, the frozen turbulence assumption fails,

2



i.e, P and P' are conveying different information [6].

The schemes for measuring P' and P are laser Doppler velocimetry (LDV) and

homodyne photon correlation spectroscopy (HCS), respectively. The former technique

is a standard one [7], whereas the HCS method has been used only recently [3,8-11].

Both of these methods require the seeding of the fluid with small particles which follow

the local flow and scatter light. The HCS method is sensitive to velocity differences

rather than the velocity itself, because it registers the beating of Doppler shifts coming

from pairs of particles moving relative to each other [3]. As will be discussed below,

the optical scheme used here records velocity differences for all values of I from the

smallest eddy size present out to a size L, which is the width of a slit through which

the light passes before it reaches the photodetector. Because one measures a scattered

intensity rather than a scattered electric field, the HCS method yields information

about the symmetric part of the probability density only. It is this part of the full

probability density function that we label as P(6v(t)). Past measurements of P' in

highly turbulent flows show that this function is not always symmetric [12, 13). In

the present LDV measurements P'(bv(t)) is also asymmetric, though the asymmetry

is small.

Our HCS measurements of P(bv(t)) show it to be well approximated by the

product of Lorentzian and Gaussian functions only if the Reynolds number of the

flow, Re, exceeds some critical value, Rec = 300. Here we define Re as Re = aU/av,

where a is the mesh size of the grid (a = 8.5 mm) and v is the kinematic viscosity

of water (0.01 cm 2/sec). The widths of the Lorentzian and Gaussian factors are

explicitly defined by the equation,

ezp(-u() 2 /2uG(t )2) 2)L ( )
r erfc(uL()/V/2uG(V)) exP(v(e)2/2uG(e) 2)" 8v(t)2 + UL(t)2  (1)

The ratio of these widths, Al uG()/uL(!) is found to be approximately 4. This
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ratio is only weakly dependent on I and Re in the range of parameters probed in this

work namely, 0.3 mm< L < 2.5 mm, 300 < Re < 1800.

As discussed below, the quantity actually measured with the HCS scheme is the

intensity correlation function, g(t), of light scattered by the seed particles. This

function is observed to have a self-similar form, which it would not have unless both

widths, UL(t) and UG(t) are proportional to th, with a common value of the exponent

h. In this experiment, as in the earlier work, using a smaller water tunnel, h is

observed to increase with increasing Re from h = 0 to h = 1/3, the Kolmogorov

value [141.

The experiments were carried out in the water tunnel that was 10 cm x 10 cm in

cross section and 1.1 m in length. The measurements were made at an axial point 25

cm downstream from the grid. The spanwise profile of the flow was flat, making the

time-averaged velocity gradient at the measuring point for P and P ignorably small

[111.

The water was seeded with polystyrene particles (diameter= 0.106p), that were

small enough to follow the local flow. The light source was the mildly focused beam

from an argon ion laser operating the wavelength A = 488 nm. The incident beam

travelled perpendicular to the flow direction. The scattered light was detected in a

direction that was also perpendicular to the flow. The incident beam traced out a

clearly visible thin line in the flowing water, the diameter of this beam being less

than 0.1 mm. The scattered light, at a scattering angle 0 = 90*, was imaged at 1:1

magnification on a slit of adiustable width L. This width is a crucial parameter in

the experiment because it determines the maximum measurable eddy size, t = L,

to which g(t) is sensitive. More than 1.5m behind the slit was a photomultiplier

which recorded the scattered intensity, I(t). The output of the photomultiplier is a

train of identically shaped pulses which are sent to the correlator, whose output is
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the intensity correlation function g(t) =< I(t' + t)I(t') > / < l(t') >2.

Under approximations which are well satisfied in these experiments, one can show

[3] that g(t) is given by

g(t) = 1 + A(t) b()dlj P(Sv(e))cos(k6v(e)t)d6v(I)) = 1 + G(t), (2)
fo 00

where the scattering vector k is of magnitude k = 2nkosin(O/2), and bv(l) is the

component of 6v(g) along the direction of k. The refractive index of the scattering

medium (water) is n = 1.33. Quite generally, G(t) is a decaying function, its char-

acteristic decay time that is of the order of 1/ku(L), where u(L) is the characteristic

velocity difference over a slit width L. The function b(t) = (2/L)(1 -t]L) is the prob-

ability that a pair of particles, separated by t, are to be found in the slit [3, 11]. This

form of b(t) is correct only if L is much greater than the beam diameter [3, 8]. The

factor A(t) represents the Brownian diffusion of the seed particles and takes account

of the fact that even in the absence of turbulent flow, G(t) will decay slowly and is of

the form A(t) - exp[-2Dk2], where D is the diffusion constant. This parameter is

deteirmined from the diameter of the seed particle and the viscosity of water [15]. All

of the experimental data have been corrected for this Brownian motion factor [11].

According to Eq. (2), if P(6v(t)) has the simple scaling form P(6v(t)) =

Q(6v(g))/u(t)), and if u(f) - 1', then G(t) has the scaling form, G(k,t,L) = G(x),

where , = ku(f)t. Therefore a plot of log G(t) vs log t, for fixed Re but various values

of L, should produce curves, all of which should be superimposable when translated

along the time axis. This is indeed what was observed in the earlier experiments [3]

and in the present ones. Figure 1 shows G(t) measured at the three slit widths L =

0.5 mm, 1.1 mm, and 2 mm, the Reynolds number being Re = 1490. The function

G(t) has been normalized so that it approaches unity in the limit t --. 0 and zero as

t - oc. Having confirmed that P is self-similar, we now examine its functional form.
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Figure 2 is a semi-log plot of G(t) at Re= 1490, L = 1.3 mm. Also

shown is the best fit to Eq. (2), assuming that P is purely Gaussian (P =

[1/V'27uG(t)]exp(-6v(t) 2/2uG(t)2 )) (solid line), and purely Lorentzian (P =

UL()/T[UL(e)2 + &(t) 2]) (broken line). These two lines correspond to UL(L) =

UG(L) = 0.216 cm/sec. Variation of these parameter could not produce a good fit

to these data with either the Gaussian or Lorentzian probability density function,

though the Lorentzian fit is clearly superior. An exponential form for P is even more

at odds with our observations, though it is observed in other experiments [12]. We

have shown a Gaussian form for P(6v(t)) because it is sometimes observed for large

values of t [16]. A probability density of dominantly Lorentzian form gave a satisfac-

tory fit to the measurements in Ref. [4]. We defer a discussion of other suggested and

observed forms of P(6v(t)).

To proceed further we take note of the fact that the cosine factor in Eq. (2) implies

that G(t) must approach the origin with zero slope (G(t) , 1 - const.i 2 ), even though

experimental limitations on the electronics bar an unambiguous observation of this

behavior. We therefore attempted the fit to G(t) with the product of a Lorentzian

and a Gaussian function, the widths of these factors being adjustable parameters.

As seen in the inset of Fig. 2 (solid line), it was possible to obtain a very good fit

to the data with this form of P. A similarly good fit with this form of G(t) was

obtained at all values of L and Re. For each of the parameter pairs, UG(f) and uL(),

we have evaluated M(1, Re) and find it to be approximately 4, increasing slightly

with decreasing slit width (At Re = 1490, M = 2.7 at L = 1.3 m, and M = 3.6

at L = 0.5 mm). There is no discernable trend with changing Re. Similar values

of M were obtained in Ref. [4]. Onuki [17] has suggested that these two widths

characterize velocity fluctuations inside and outside of the active regions. Abundant

experiments suggest that the active regions of the turbulent dissipation lie on a fractal
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or multi-fractal [18].

It is instructive to compare our measurements of G(t) with a prediction that P

is a log-normal distribution, since this functional form of P has a credible theoretical

basis and many experiments have been aimed at testing the log-normal theory [2,

16, 19]. Here we compare our measurements with a modified log-normal theory due

to Castaing et al. [13]. This theory, which is free of an inconsistency contained in

the original log-normal theory [2], successfully explains recent measurements of the

temperature-difference density function P(ST(t)) as measured in Rayleigh Benard

convection by the Chicago group [20]. Castaing assumes that 6v(1) has a Gaussian

distribution with variance u(t), but that u(f) is a random variable with a log-normal

distribution. The specific form of P is

PA( e) = j o exp(-bv(e)2 /2u 2 ) exp(-n 2 (u/u(1))/2A2 )du/u2 , (3)

where u(e) is the most probable variance of bv(t) and A is the variance of In u. To

compare this prediction with our measurements, we assume that u(t) may be taken to

be the measured value of UL(L) (since the Lorentzian factor dominates in G(t)). The

parameter, A, is taken to have the form proposed by Castaing, namely A = (t/o),

with 8 = 0.24. The parameter to is set equal to the grid size of 8.5 mm. Inserting

the above expression for P into Eq. (2) yields a G(t) which is plotted as the broken

line in the inset of Fig. 2. We note that a log normal form of P, such as in Eq. (3),

assures that G(t) will not have the self-similar form so clearly seen in Fig. 1. With

the above values of # and u(t), the log-normal theory is clearly not a good fit to the

data in Fig. 2.

Next we turn to the LDV measurements of P'(bv(t)). With the LDV technique,

the seed particles traverse optical interference fringes, modulating the intensity of the

scattered light received by the photomultiplier. A commercially available counter-
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signal conditioner records the frequency of these pulses and hence determines v(t) at

the observation point. The Taylor hypotheses is then invoked to convert the v(t) into

a temporally fluctuating signal, v(x), where z is a coordinate in the flow direction [7].

The Taylor hypothesis is generally assumed to be valid when the ratio f of the rms

fluctuations in the velocity about its mean value, U, is a small fraction of U itself.

This condition was well satisfied in the present experiments where f was always less

than 0.04. By splitting up the time record, v(t), into segments of equal length bt, and

replacing bt by 1/U, we create an the ensemble of velocity differences, 6v(e), from

which P'(6v(t)) dbv(bt) can be constructed with a histogram.

Fig. 3 is a semi-log plot of an LDV measurement of P' vs 6v(t)2 at Re = 1490

and t = 1.3 mm. The solid line in the figure is a best fit to these data, assuming that

P' is of the Lorentzian-Gaussian form of Eq. (1) (If P' were a Gaussian function, the

data points would lie on a straight line in this figure). The parameters producing this

fit are UL(L) = 0.32 cm/sec and uG(L) = 0.47 cm/sec, giving M = 1.4. This ratio is

much smaller than M obtained from the HCS experiments. Those LDV measurements

which spanned the same range of Re and L as the HCS experiments, could be fitted

with a density function containing the product of Lorentzian and Gaussian factors.

However, the exponent h(Re) could not be determined without making questionable

assumptions [11].

The broken line in Fig. 3 is the function P extracted from the HCS measurements

made using the same values of Re and L as the LDV data in the figure. The param-

eters associated with this HCS measurement are UL(L) = 0.26 cm/sec and uG(L) =

0.69 cm/sec. Note that the Gaussian factor is weighted much more heavily than for

the HCS measurements, i.e. M is smaller. The very different shape of the two curves

in Fig. 3 leaves no doubt as to the failure of the frozen turbulence assumption here.

Both P and P' give a greater weight to velocity fluctuations of large magnitude than

8



either a Gaussian or exponential function.

The failure of the frozen turbulence assumption indicates that the small-eddies,

which are being probed here, do not maintain their geometrical shape as they are

convected past the observation point at the mean velocity, U. A possible cause is

the coupling between velocity fluctuations of many different sizes, a point that has

received much theoretical attention [21, 22].

In summary, we have carried out measurements which expose the Taylor hypoth-

esis (frozen turbulence assumption) to an experimental test and have measured the

functional form of the probability density P(bv(e)) over a range of eddy sizes e in

the Reynolds number range 300 to 1800. The function P is well represented by the

product of Gaussian and Lorentzian factors but not by either factor alone or by ex-

ponential or log-normal functions. These observations indicate the importance of

probing turbulence in both the time and space domains.
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FIGURES

FIG. 1. Superimposed log-log plot of G(t) for the three indicated slit widths, L and

at the Reynolds number indicated.

FIG. 2. Semi-log plot of G(t) at Re = 1490, L = 1.3 mm. The solid line is a Lorentzian

fit to the data, and the broken line is a Gaussian fit. The characteristic widths uL(L) and

ua(L) of both factors is 0.216 cm/sec. The inset shows the same data fitted to Eq. (1)

(solid line) and to the log-normal model (broken line) discussed in the text.

FIG. 3. Semi-log plot of the probability density function as measured by laser Doppler

velocimetry, the abscissa being 6v(1)2 . The solid line is a fit to these data using Eq. (1) and

the broken line is the function P extracted from the HCS measurements, using Eqs. (1) and

(2). The measurements were at Re=1490 and £ =1.3 mm.
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